
254 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES March

of constants for all 38 waveguides (using the

“accepted value of c) is generally at-ailable
at the present time.

A complete cross-referenced set of tables
has recently been completed at this Labora-

tory using the Frederic (Feranti-Mercury)
computer. For each of the 38 waveguide

sizes, k (in cm), Xg (in cm and inches), l/k~

(in cm-’ and inches-’), XO/X, and k/& are
tabulated against frequency. Entitled “In-

tern Rapport E-22, ‘Tables of Constants for
Thirty-Eight Rigid Hollow Metal Rec-
tangular Waveguides,’ 12 November 1963, ”

the complete report is available on request
from: Norwegian Defence Research Estab-

lishment, Box 25, A>eller, Norway.
M. MICHAEL BRADY

Norwegian Defence Research Establ.
Kjeller, Norwa~-

The Use of the Rayleigh-Ritz

Method in Nonself-

Adjoint Problems

This communication is a comment on the

very interesting paperl by S. P. Morgan in

the May issue of these TRANSACTIONS. It
may be of interest to point out that problems

similar to those discussed by Morgan arise
in nuclear reactor theory. Here the operators

are not, as in footnotel, complex symmetric
integral operators but they are nonself-
adjoint, and there is considerable interest in
finding their eigenvalues and eigenvectors

by Rayleigh-Ritz methods. Morgan is cor-
rect, of course, in pointing out that the

usual maximum and minimum criteria are
lacking in these cases and that there are no

bounds or error estimates. However the con-
clusion that it is impossible to use the meth-

ods may be overly pessimistic. The methods

have been usedz-s in reactor theory with

considerable success (measured by compari-
son with exact solutions), and this fact gives
hope that they may be useful in laser ap-
plications.

The key point in successful use of Ray-
leigh-Ritz methods is the selection of ap-

propriate “trial” functions. This is an art
which is quickly developed by experience
and knowledge of the physical process. In

the reactor applications one tactic which
has been found \,ery effective is to choose
trial functions which in a sense “bound” the
true eigenfunction. For example, suppose it
is known that the true eigenfunction has a
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peak in the center but it is not known how
high the peak is. One would then choose two
trial functions, one having a higher and one a

lower peak than expected of the eigenfunc-
tion. The Rayleigh-Ritz methodl with the

criterion ‘(make stationary” is used to

‘(blend” the two trial functions in the appro-
priate proportions. The justification for this

procedure is basically empirical—it gives

good results. Howe~-er, a theoretical argu-

ment has been advancedd which tends to

make the process somewhat more palatable.
The essence of this argument is to view the

variational method as a special case of a
more general class of approximal:ion meth-

ods, the “weighted residual” methods, ~ and

then to show that the variational method is,

in a certain sense, the best special case with-
in this class.

In the remainder of this communication

we outline the variational or Rayleigh-Ritz
process in the general nonself-acljoint case

and show the connections to thle type of
operator used in footnotel.

Let the letters u, v, etc. denote elements

of a function space with a complex inner
product (2.,, u), and let L denote a nonself-

ad joint linear operator on this space. Then

a variational principle for the eigenvalues
of L is that the functional

(z,, LZI)
F[ZJ, t] = —

(u, v)
(1)

be stationary with respect to arbitrary in-

dependent variations of the argument func-
tions u and v. If 2, 0 denotes the point where

F takes on the stationary value A, then about

this point the first variation is

& [(81~, [L-k]6)+([L*-X]ti, 6zI)], (2)8F=—

so that F is stationary_ if and only if A, ~ is
an eigenpair of L and k, i is an eigenpair of

the adjoint operator L*.

Ltl = Afl; L*@ = ~zt. (3)

(Here ~= complex conjugate of k. )

To apply the Rayleigh-Ritz process we
assume approximate solutions in the form

$ = ~ a,%; d S= + b,%, (4)

where the wt, hj are known functions and the

a~, bi unknown parameters. Inserting (1) into

(1) yields the ratio of bilinear forms

[61 , , . 6.] r,~ti,,,L,J[~’l
:1

and requiring this to be stationary yields the
matrix eigen~-alue problem

[(W7L’[l)I[:I=AICL’’1;’))I[:I‘6)
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Now we turn attention to the type of

operators considered by M organ.1 For these

operators the ad joint is just the complex
conjugate

L*=Z (7)

(where ~ is the operator such that Zu = (~ti)

for all u). For such operators (3) shows that

the adjoint eigenfunction is the conjugate
of the direct eigenfunction

d=$. (8)

Jlre may make use of this knowledge to spe-
cialize the principle ( 1) in the following way.

For operators satisfying (7) the stationary

points of F [z~, v] have the “natural” prop-

ert y that they are conjugate pairs of f unc-

tions. Therefore, if the class of admissible

pairs (u, v) be restricted to only conjugate

pairs, then the functional over the restricted

domain becomes

(3, Lv)
F[5, v] = —

(fl, v)
(9)

and has the same stationary points as the

unrestricted functional. The functional (9)
is recognized as R [V] [(9) in Morgaul ] by
identifying (u, v) with the integral

J

b
Zi(x) v(X)d”v

a

and Lk with the operation

J

b
k (X, y)h(y)dy.

0,

The Ritz process applied to (9) yields

[(fikL’’’)l[3=x[(
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I wish to thank Dr. Kaplan for calling
my- attention to the use of variational prin-

ciples for approximating the eigen~,alues of
nonself-adjoint operators in nuclear reactor

theory. In the problems to which he refers,
the functions and operators are all real,
and it is possible that variational calcula-

tions may be more easily justified for real
nonself-adj oint operators than for complex

ones.
For complex symmetric operators,l it is

definitely not true that the Rayleigh-Ritz
procedure leads to the best approximation
obtainable with a gi~-en set of trial func-
tions, unless the space spanned by the trial
functions happens to include the (unknown)

exact eigenfuuction. Specifically, it does not
minimize the distance between the exact

and approximate eigenvalues, and it does
not minimize the distance between the exact

and approximate eigenfunctious, in terms of

a quadratic metric.
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As a simple example, let L be a complex

symmetric operator and let

h = hl + ahz, (1)

where ?tL and lzz are any two trial functions

and a is a complex parameter. Then

(~, Lk)
.—

(k, h)

(z,, u,) + 241, W + C@! LILl . (2)——
(;1, k,) + 241, h,) + a’(1,, h,)

But the right-hand side of (2) is the quotient

of two quadratic polynomials in a, and in

general it will attain any preassigned value

exactly twice as a ranges over the whole
complex plane.8 For example, it can be made
equal to any eigenvalue of L, even though
k, and h, are entirely unrelated to the corre-
sponding eigenfunctiou. On the other hand,

aPPIYing the Rayleigh-Ritz procedure to ]LI

and h~ yields two values of a for which the

corresponding values of (k, Lk)/(k, it) need
not and generally do not coincide with any

eigenvalue of L.

A numerical example shows the sort of

thing that can happen. Let

J[
~v= ‘ 1 + +(.t + y) ]v(y)dy, (3)

–1

and choose the trial functions

hi(x) = 1 – @+is.v3,

)/2(2) = l+i2.t, (4)

where s is a real constant to be specified

presently. Straightforward calculation gives

(L,, Llr,) = 4 – g + ~,

(Z,,IX,) =:–~,

(k,, LhJ =;,

(i,, hJ =2-;+:,

(i,, h,) = 2 – :;,

(i,, h,) = – + . (5)

Ii’e now choose s to be the larger of the

two roots of the equation

(k,, Lb,)
— =I++v’%. (6)

(h,, !1,7

To fit,e decimals,

s = 1.62669. (7)

The determinantal equation resulting from

the Rayleigh-Ritz process [Kaplan’s (10)]

becomes, numerically,

0.24250 –O.13350A 0.57005+0.38581x

0.57005 +0.3t3581k 1.33333 +0.66667h

= O. (8)

~Notice that the variational quotient associated
with a Hermittan operator, as given by (4) of Mor-
gan,l cannot generally be made to assume arbitrary
values by proper choice of o.

Correspondence

The roots of this equation and the rorre-

spondiug ‘(eigenfunctiolls” are

~1 = – 0.00357, i, = h~ – 0.42727hl,

~2 = – 1.91444, ;, = h~ + 2.95501h~. (9)

But since the kernel of the operator L is
of finite rank, it is easy to calculate the eigem
values and eigenf unctions exacth,. They
,areg

~, = t + ~@5 = 1.81650,

11 = 1 + i(3 — <6)1 = 1 +io.55051f;

h = 1 – 3v’6 = 0.18350,

w = 1 + ‘X3 + V(5)$ = 1 + i5,’M9-19.Y. (10)

Comparing (6) and ( 10), we see that the
eigen~-alue Xl coincides exactly with the
Rayleigh quotient (~~, Llz~)/(ii, hi), even

though IJ1 is not a multiple of VI. However
the Rayleigh-Ritz procedure gives no indi-
cation of this, and when applied to the trial
~unctio~s h, and Z: it yields “eigeuvalues”

Al and A2 which are much worse than we

would have obtained from JLI alone. Hence

the procedure clearly does not gi~-e the best

approximation to Xi which can be had from a
linear combination of k., and ;LZ

This innocent-looking example shows
that the use of the Rayleigh-Ritz procedure
to refine an approximate eigentmlue of a
complex symluetric operator can actually
lead to a worse approximation than the
initial one. One might conjecture, of course,
that even though the variational method

does not approximate eigenvalues verl- well,
it does give an optimal approximation for the

eigenfunctions. Unfortunately this is not

true either. If one defines the distance be-

tween two complex-valued functions in

terms of a quadratic metric, then the best

approximation to rJI which can be obtained
using a linear combination of kl and Iz2 is

found by minimizing

I(p,, p,) = (ZJ,– p,ll, – d,, VI – p,h, – P,hz)

b

——
JI 1’

u — P1]21 — Pzh d.x (11)
.

with respect to the complex coefficients pl
and pj. The minimization is easily carried

out in the present example where rJl is known,

but it does not lead to either of the Itayleigh-

Ritz “eigenfuuctious.”

Dr. Kaplan suggests that the key to the
successful use of variational procedures in
uon-self-adjoint problems is the selection of

appropriate trial functions, in the light Of
experience and knowledge of the physical
process. One can hardly quarrel with this

objective, although it may be easier to carry
out when the unknown functions m-e real

than when they are complex. Certainly no
law prohibits anyone from formally applying

the Rayleigh-Ritz procedure to a selected

set of functions and thinking that he has
obtained a better approximation by so
doing. Undoubtedly in some cases he ac-
tually will get a better approximation than
he started with; but if he does not know
the exact eigenvalue in advance, he can
never be quite sure whether the Rayleigh-

Ritz procedure has served him well or ill.

* Zero is also an eigenvalue of L of infinite multi-
plicity, but it plays no role m the present argument.
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To the best of my knowledge, no

theorems have ever heel L proved which
specify the conditions, if an~:, under which
the Rayleigh-Ritz procedure will yield an

improved approximation to an eigen~-alue of
a nomself-adjoint (for example, complex

symmetric ) operator. The~-e are such the.
orerns for self -ad joint or Hermitian opera-
tors, \Vhether anything similar can be ob-

tained for nonself-adjoint operators is an
interesting open question.

I should like to acknowledge a stimulat-

ing exchange of correspondence on this

subject with Professor R. IF. Harringtou of

Syracuse University.

S. p. ~[OI<GAX

Ilell Telephone Laboratory, Inc.

Murra}- Hill, N. J.

Comment on ‘(Broadband Micro-

wave Discriminator”

The frequency discriminator described

by R. J. Mohrl is capable of a simple exten-
sion to give a de~-ice with important ad-
vantages and many practical applications.

Mohr’s circuit (Fig, 1.) measures fre-
quency in the form

where 1 is the length of the phase delay line,

~ is the frequency, c the phase velocity and

2rry_=
+.

c

An alternative method of processing

detected signals is to take the difference

[E1\’– IE2]’=E’COS2T1L)
c

the

and by duplicating the circuit so that

@’=0–(rr/2), we have

and hence

Simply, a A/4 length of line may be used to

subtract m/2 from the phase delay @ and
Fig. 2 shows a typical circuit. Some non-
linearity in the frequency characteristic will
result from the fact that the phase change

of ~/2 will vary with frequency However,
this is small and circuits operating over fre-
queucey ranges up to 6:1 in the band 0.15

Gc to 11.5 Gc have been successfully used.
An absolute measuring acclu-acy of + 5° in
@ is typical and may be ‘improved by cali-
brating individual circuits.
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