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of constants for all 38 waveguides (using the
“accepted value of ¢) is generally available
at the present time.

A complete cross-referenced set of tables
has recently been completed at this labora-
tory using the Frederic (Feranti-Mercury)
computer. For each of the 38 waveguide
sizes, A (in cm), X\, (in cm and inches), 1/X,
(in cm™! and inches™), A;/A, and A/\, are
tabulated against frequency. Entitled “In-
tern Rapport E-22, ‘“Tables of Constants for
Thirty-Eight Rigid Hollow Metal Rec-
tangular Waveguides,” 12 November 1963,”
the complete report is available on request
from: Norwegian Defence Research Estab-
lishment, Box 25, Kjeller, Norway.

M. MicHAEL Brapy
Norwegian Defence Research Establ.
Kjeller, Norway

The Use of the Rayleigh-Ritz
Method in Nonself-
Adjoint Problems

This communication is a comment on the
very interesting paper! by S. P. Morgan in
the May issue of these TransacTtions. It
may be of interest to point out that problems
similar to those discussed by Morgan arise
in nuclear reactor theory. Here the operators
are not, as in footnote!, complex symmetric
integral operators but they are nonself-
adjoint, and there is considerable interest in
finding their eigenvalues and eigenvectors
by Rayleigh-Ritz methods. Morgan is cor-
rect, of course, in pointing out that the
usual maximum and minimum criteria are
lacking in these cases and that there are no
bounds or error estimates. However the con-
clusion that it is impossible to use the meth-
ods may be overly pessimistic. The methods
have been used?™ in reactor theory with
considerable success (measured by compari-
son with exact solutions), and this fact gives
hope that they may be useful in laser ap-
plications.

The key point in successful use of Ray-
leigh-Ritz methods is the selection of ap-
propriate “trial” functions. This is an art
which is quickly developed by experience
and knowledge of the physical process. In
the reactor applications one tactic which
has been found very effective is to choose
trial functions which in a sense “bound” the
true eigenfunction. For example, suppose it
is known that the true eigenfunction has a
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peak in the center but it is not known how
high the peak is. One would then choose two
trial functions, one having a higher and one a
lower peak than expected of the eigenfunc-
tion. The Rayleigh-Ritz method with the
criterion “make stationary” is used to
“blend” the two trial functions in the appro-
priate proportions. The justification for this
procedure is basically empirical—it gives
good results. However, a theoretical argu-
ment has been advanced® which tends to
make the process somewhat more palatable.
The essence of this argument is to view the
variational method as a special case of a
more general class of approximation meth-
ods, the “weighted residual” methods,” and
then to show that the variational method is,
in a certain sense, the best special case with-
in this class.

In the remainder of this communication
we outline the variational or Rayleigh-Ritz
process in the general nonself-adjoint case
and show the connections to the type of
operator used in footnotel.

Let the letters u, v, etc. denote elements
of a function space with a complex inner
product (%, v), and let L denote a nonself-
adjoint linear operator on this space. Then
a variational principle for the eigenvalues
of L is that the functional

(u, L)
(u, v)

be stationary with respect to arbitrary in-
dependent variations of the argument func-
tions # and v. If %, 7 denotes the point where
F takes on the stationary value A, then about
this point the first variation is

F[u, 7] = (€]

sF=—"_ [(ou, [L=\D)+([L*—7]a,50)], (2)

(a,9)
so that F is stationary if and only if A, 7 is
an eigenpair of L and A, # is an eigenpair of
the adjoint operator L*,
i =205 L' =M. 3)
(Here A = complex conjugate of \.)
To apply the Rayleigh-Ritz process we
assume approximate solutions in the form

~ Y. ah; o= Y by @
1 1

where the w;, #; are known functions and the
a,, b; unknown parameters. Inserting (4) into
(1) yields the ratio of bilinear forms
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and requiring this to be stationary yields the
matrix eigenvalue problem
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Now we turn attention to the type of
operators considered by Morgan.! For these
operators the adjoint is just the complex
conjugate

L* = L (7)

(where T is the operator such that Ly =(7%)
for all «). For such operators (3) shows that
the adjoint eigenfunction is the conjugate
of the direct eigenfunction

®)

We may make use of this knowledge to spe-
cialize the principle (1) in the following way.
For operators satisfying (7) the stationary
points of F[uz, v] have the “natural” prop-
erty that they are conjugate pairs of func-
tions. Therefore, if the class of admissible
pairs (%, v) be restricted to only conjugate
pairs, then the functional over the restricted
domain becomes

=

P
i =

(3, Lv)
(@, 7)
and has the same stationary points as the
unrestricted functional. The functional (9)

is recognized as R[] [(9) in Morgan!] by
identifying (u, v) with the integral

f bzi(x)v(x)dx

Fls, 1] =

®

and Lk with the operation

b
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The Ritz process applied to (9) yields
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Author's Reply

I wish to thank Dr. Kaplan for calling
my attention to the use of variational prin-
ciples for approximating the eigenvalues of
nonself-adjoint operators in nuclear reactor
theory. In the problems to which he refers,
the functions and operators are all real,
and it is possible that variational calcula-
tions may be more easily justitied for real
nonself-adjoint operators than for complex
ones.

For complex symmetric operators,! it is
definitely nof true that the Rayleigh-Ritz
procedure leads to the best approximation
obtainable with a given set of trial func-
tions, unless the space spanned by the trial
functions happens to include the (unknown)
exact eigenfunction. Specifically, it does not
minimize the distance between the exact
and approximate eigenvalues, and it does
not minimize the distance between the exact
and approximate eigenfunctions, in terms of
a quadratic metric.
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As a simple example, let L be a complex
symmetric operator and let

= I+ ahs, 1)

where % and %, are any two trial functions
and « is a complex parameter. Then
(k, Lh)

(hy )

_ (B, L) + 2alu, Lis) 4 o*(ha, L) @

(R, 1) + 2a(hi, he) + a2(hs, hy)
But the right-hand side of (2) is the quotient
of two quadratic polynomials in e, and in
general it will attain any preassigned value
exactly twice as « ranges over the whole
complex plane.® For example, it can be made
equal to any eigenvalue of L, even though
k1 and ks are entirely unrelated to the corre-
sponding eigenfunction. On the other hand,
applying the Rayleigh-Ritz procedure to /i
and ks yields two values of « for which the
corresponding values of (&, Lk)/(k, k) need
not and generally do not coincide with any
eigenvalue of L.
A numerical example shows the sort of

thing that can happen. Let

In= f _1[1 + i3+ plidy, B3)

and choose the trial functions
(x) =1 — sx? + isx?,
Jia(x) = 1+ 22, 4

where s is a real constant to be specified
presently. Straightforward calculation gives

- 525 32s?
Ty L) = 4 — 2 - 20
(i, L) 550
- 8 58s

hay L) = — —

(Jy Lhs) 3 =

_ 4

(hay Lhy) = 3

2

. 4s 4s
] =2 — 3
(11, ]11) 3 + 35,

- 22s

Ty b = 2 — ==
( 1, h?) 15 »

- 2

(hay h2) = — 3 (5)

We now choose s to be the larger of the
two roots of the equation

(hy, Lh) y
— — = ERVAN
W) 1+ 3v6 (6)
To five decimals,
s = 1.62669. @)

The determinantal equation resulting from
the Rayleigh-Ritz process [Kaplan's (10)]
becomes, numerically,
0.24250—0.13350n  0.57005-4-0.38581x
0.57005+40.38581x  1.3333340.66667x

=0. (8

fNotice that the variational quotient associated
with a Hermitian operator, as given by (4) of Mor-
gan,! cannot generally be made to assume arbitrary
values by proper choice of c.

Correspondence

The roots of this equation and the corre-
sponding “eigenfunctions” are
A= — 0.00357, v = hy — 0.42727)s,
Ne = — L9144, 3o = By + 2.05501%.  (9)
But since the kernel of the operator L is
of finite rank, it is easy to calculate the eigen-

values and eigenfunctions exactly. They
are®

A= 1+ 36 ~ 1.81650,
v =1+4iB—~/B)x ~1+4i0.55051x;
he=1—13/6 ~ 0.18350,
v = 1443+ vB)x ~ 1 + i5.44910y.

Il

(10)

Comparing (6) and (10), we see that the
eigenvalue M coincides exactly with the
Rayleigh quotient (i, Lki)/(h, k), even
though 71 is not a multiple of v. However
the Rayleigh-Ritz procedure gives no indi-
cation of this, and when applied to the trial
functions A and & it yields “eigenvalues”
M and A which are much worse than we
would have obtained from #; alone. Hence
the procedure clearly does not give the best
approximation to Ay which can be had from a
linear combination of %; and k..

This innocent-looking example shows
that the use of the Rayleigh-Ritz procedure
to refine an approximate eigenvalue of a
complex syminetric operator can actually
lead to a worse approximation than the
initial one. One might conjecture, of course,
that even though the variational method
does not approximate eigenvalues very well,
it does give an optimal approximation for the
eigenfunctions. Unfortunately this is not
true either. If one defines the distance be-
tween two complex-valued functions in
terms of a quadratic metric, then the best
approximation to v, which can be obtained
using a linear combination of %y and k. is
found by minimizing

[(p1, pg) = (7]1 —_ p1]11 - pz]lQ, 7 91111 — pgllﬁ)
b
- f |90 — pihr — polia|?dx  (11)

with respect to the complex coefficients pr
and p;. The minimization is easily carried
out in the present example where 7, is known,
but it does not lead to either of the Rayleigh-
Ritz “eigenfunctions.”

Dr. Kaplan suggests that the key to the
successful use of variational procedures in
non-self-adjoint problems is the selection of
appropriate trial functions, in the light of
experience and knowledge of the physical
process. One can hardly quarrel with this
objective, although it may be easier to carry
out when the unknown functions are real
than when they are complex. Certainly no
law prohibits anyone from formally applying
the Rayleigh-Ritz procedure to a selected
set of functions and thinking that he has
obtained a better approximation by so
doing. Undoubtedly in some cases he ac-
tually will get a better approximation than
he started with; but if he does not know
the exact eigenvalue in advance, he can
never be quite sure whether the Rayleigh-
Ritz procedure has served him well or ill.

% Zero is also an eigenvalue of L of infinite multi-
plicity, but 1t plays no role in the present argument.
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To the best of my knowledge, no
theorems have ever been proved which
specily the conditions, if any, under which
the Rayleigh-Ritz procedure will yield an
improved approximation to an eigenvalue of
a non-self-adjoint (for example, complex
symmetric) operator. There are such the-
orems for self-adjoint or Hermitian opera-
tors. Whether anything similar can be ob-
tained for nonself-adjoint operators is an
interesting open question.

I should like to acknowledge a stimulat-
ing exchange of correspondence on this
subject with Professor R. F. Harrington of
Syracuse University.

S. P. Morean
Bell Telephone Laboratory, Inc.
Murray Hill, N. J.

Comment on “Broadband Micro-
wave Discriminator”

The frequency discriminator described
by R. J. Mohr!is capable of a simple exten-
sion? to give a device with important ad-
vantages and many practical applications.

Mohr’s circuit (Fig. 1) measures fre-
quency in the form

,Ez 2

——— = tan? ﬂ"li

| 2 ¢

where [ is the length of the phase delay line,
fis the frequency, ¢ the phase velocity and

2mlf
=

An alternative method of processing the
detected signals is to take the difference

[Eij2— | Bef2 = Freoszm L
1

and by duplicating the circuit so that
¢'=¢—(x/2), we have

2 .

on

| Fa

2 = E?sin 2xl L
c
and hence

LY el 01 N tan ¢.
IE12'“ |E2 ¢

2

Simply, a A/4 length of line may be used to
subtract =/2 from the phase delay ¢ and
Fig. 2 shows a typical circuit. Some non-
linearity in the frequency characteristic will
result from the fact that the phase change
of w/2 will vary with frequency However,
this is small and circuits operating over fre-
quencey ranges up to 6:1 in the band 0.15
Ge to 11.5 Gce have been successfully used.
An absolute measuring accuracy of +35°in
¢ is typical and may be improved by cali-
brating individual circuits.
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